Di terowongan angin atau pada sebuah penerbangan, sebuah airfoil secara sederhana adalah sebuah objek streamline yang disisipkan pada aliran udara yang bergerak. Jika airfoilnya berbentuk tetesan air maka perubahan kecepatan dan tekanan dari aliran udara yang melewati bagian atas dan bawah akan sama di kedua sisi. Tapi kalau bentuk tetesan air itu dipotong di tengah dengan sama rata, hasilnya adalah sebuah bentuk sederhana airfoil (sayap). Jika airfoil itu dinaikkan (mendongak) maka aliran udara akan menabrak dengan sebuah sudut tertentu (angle of attack), molekul udara yang bergerak melewati permukaan atas akan dipaksa untuk bergerak dengan kecepatan yang lebih tinggi dibandingkan dengan molekul udara yang bergerak di bawah airfoil, hal ini karena molekul di atas harus menjalani jarak yang lebih jauh karena lengkungan dari permukaan yang di atas. Pertambahan kecepatan ini mengurangi tekanan di atas airfoil.

Prinsip Bernoulli sendiri tidak menjelaskan tentang distribusi tekanan di atas permukaan airfoil. Diskusi tentang pengaruh momentum dari udara pada waktu mengalir melalui kurva yang berbeda-beda di dekat airfoil akan dikemukakan.

Momentum adalah resistansi dari sebuah benda yang bergerak ketika arah dan besar gerakannya diubah. Ketika setiap benda dipaksa untuk bergerak dalam gerakan melingkar, benda tersebut akan memberikan reaksi resistansi dengan arah keluar yang berlawanan dengan pusat putaran. Ini disebut gaya sentrifugal.

Ketika partikel udara bergerak dengan arah melengkung AB, gaya sentrifugal cenderung membuangnya ke arah panah antara A dan B, sehingga, menyebabkan udara untuk mendesak lebih dari tekanan normal di leading edge-nya airfoil. Tapi setelah partikel udara melewati titik B (titik berbalik arah dari arah lengkungan/kurva) gaya sentrifugal cenderung untuk membuang partikel pada arah panah antara B dan C (menyebabkan berkurangnya tekanan pada airfoil). Efek ini berlaku sampai partikel udara mencapai titik C, titik kedua berbalik arah dari lengkungan aliran udara. Kembali lagi, gaya sentrifugal dibalikkan dan partikel udara cenderung untuk memberi sedikit lebih tekanan dari normal pada trailing edge dari airfoil tersebut, sebagaimana digambarkan dengan panah pendek antara C dan D.

Maka dari itu, tekanan udara dari permukaan bagian atas airfoil disebarkan sehingga tekanan lebih besar di leading edge daripada tekanan atmosfir sekitarnya, menyebabkan tahanan yang kuat pada gerakan ke depan, tapi tekanan udara lebih sedikit daripada tekanan atmosfir sekitarnya di sebagian besar permukaan atas (B ke C).

Seperti terlihat pada penggunaan teori Bernoulli pada sebuah bejana venturi, pertambahan kecepatan udara pada bagian atas dari airfoil menyebabkan turunnya tekanan. Tekanan yang turun ini adalah salah satu komponen dari total daya angkat. Tapi adalah sebuah kesalahan untuk berasumsi bahwa perbedaan tekanan antara permukaan bagian atas dan bagian bawah tersebut adalah satu-satunya hasil total dari produksi daya angkat.

Kita juga harus ingat bahwa turunnya tekanan berhubungan dengan downwash, gaya turun ke belakang yang mengalir dari permukaan atas dari sayap. Seperti terlihat dari diskusi sebelumnya yang berhubungan dengan aksi dinamis dari udara pada saat udara mengenai permukaan bawah dari sayap, reaksinya dari aliran ke belakang dan ke bawah menghasilkan gaya ke atas dan ke depan pada sayap. Reaksi yang sama berlaku pada aliran udara melewati permukaan atas airfoil seperti yang terjadi dibawahnya, dan hukum Newton ketiga kembali dalam gambaran.